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Abstract
We investigate the low temperature behaviour of a two-parameter generalized
bosonic quantum gas with SUq1/q2 (2)-symmetry, where q1 and q2 are real
independent deformation parameters. We calculate, in the thermodynamical
limit, several statistical and thermodynamical functions of the system through
an SUq1/q2 (2)-invariant bosonic Hamiltonian. In the low and high temperature
limits, the specific heat of the system is obtained in terms of some functions
of the deformation parameters q1 and q2. At the critical temperature being
higher than that of the free boson gas, the specific heat of the two-parameter
generalized boson gas exhibits a λ-point transition behaviour. We also discuss
the conditions under which the Bose–Einstein condensation would occur in the
present two-parameter generalized boson model. However, the free boson gas
results can be recovered in the limit q1 = q2 = 1.

PACS numbers: 02.20.Uw, 05.30.Jp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum groups and their associated algebras, which are specific deformations of classical Lie
groups and Lie algebras with some deformation parameter q (real or complex), have recently
attracted a great deal of interest from both mathematicians and physicists. Originally, they
emerged in studies of the quantum inverse scattering problem method and in the solution of
the quantum Yang–Baxter equation [1]. These quantum groups and quantum algebras have
been applied to several research areas of physics including two-dimensional conformal field
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theories [2], exactly solvable statistical models [3], noncommutative geometry [4] and the
nuclear quantum many-body problem [5].

On the other hand, another direction of applications has focused on the field of statistical
mechanics. For instance, possible connections between quantum groups and generalized
statistical machanics have been studied [6]. We should also add that some earliear studies
have been conducted to obtain a physical interpretation of the deformation parameter q by
considering a canonical ensemble of q-oscillators [7], which are q-deformations of the bosonic
harmonic oscillator algebra. Meanwhile, statistical and thermodynamical properties of a gas of
q-deformed bosons as well as fermions have been extensively investigated in the literature [8].
Furthermore, some two-parameter generalizations of thermodynamical characteristics of a gas
of (p, q)-deformed bosons without interaction have also been realized [9]. The high and low
temperature thermodynamics of the one-parameter deformed boson gas having the symmetry
of the quantum group SUq(2) have recently been studied by Ubriaco [10–12]. In these studies,
the interactions among the bosonic particles of the system are fixed by the quantum group
SUq(2). In fact, such interactions result from the quantum group invariance of the Hamiltonian
of the system. The results of such studies have recently been generalized to the two-parameter
deformed quantum group boson and fermion gas models [13–15]. However, a different
bosonic generalization has been carried out by considering the two-parameter quantum
group GLp,q(2)-invariant boson gas defined under the condition p = q∗, (p, q) ∈ C by
Jellal [16].

In particular, the high temperature behaviour of a fermionic gas whose particle algebra is
covariant under the quantum group SUp/q (2) has a crucial importance [14]. It is shown that
this two-parameter SUp/q (2)-fermion model in two spatial dimensions exhibits remarkably
an anyonic type of behaviour at some critical values of the deformation parameters q and p.
However, it is impossible to obtain a similar behaviour neither in the one-parameter deformed
SUq(2)-fermion gas model [10] nor in the free fermion gas model. Such interesting results
have thus motivated us to study thermodynamical and statistical aspects of a bosonic version
of the SUp/q(2)-fermion model.

In this paper, we aim to study the thermodynamical properties of a bosonic gas having
the symmetry of the quantum group SUq1/q2 (2). The results obtained in this way will serve
as a two-parameter generalization related to the low temperature thermodynamics of earlier
quantum group boson gas studies [10–12]. We start with a bosonic Hamiltonian invariant under
the quantum group SUq1/q2 (2). We construct this Hamiltonian from the operators generating a
two-parameter deformed SUq1/q2 (2)-invariant boson algebra. Obviously, this algebra becomes
the ordinary boson algebra in the limit q1 = q2 = 1. We then investigate the low temperature
(high density) behaviour of such a two-parameter deformed boson model with SUq1/q2 (2)-
symmetry in the thermodynamical limit. Particularly, by considering the role of deformation
parameters q1 and q2, we discuss the conditions under which the Bose–Einstein condensation
would occur.

The paper is organized as follows. In section 2, we review some basic definitions
and properties concerning the quantum group SUq(2)-bosons, and present its two-parameter
generalization SUq1/q2 (2)-bosons. In section 3, we introduce our model described by an
SUq1/q2 (2)-invariant bosonic Hamiltonian. This leads to the discussion of thermodynamics of
the model obtained via the grand partition function given in section 4. In particular, we find,
in the thermodynamical limit, the average number of particles, the critical temperature Tc and
the internal energy U of the SUq1/q2 (2)-boson gas. In the low and high temperature limits, we
then calculate the specific heat of the system in terms of some functions of the deformation
parameters q1 and q2. In the last section, we discuss the phenomenon of Bose–Einstein
condensation in the present two-parameter SUq1/q2 (2)-boson model and give our conclusions.
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2. Quantum group SUq1/q2 (2)-bosons

In this section, we recall the general properties of the SUq(N)-bosons and present its two-
parameter generalization. The usual boson oscillators satisfy the following commutation
relations:

φiφ
∗
j − φ∗

j φi = δij , φiφj − φjφi = 0, φ∗
i φi = Ni, i, j = 1, 2, . . . , N, (1)

where φi and φ∗
i are the bosonic annihilation and creation operators, respectively, and Ni is

the boson number operator. These oscillators are invariant under the action of the undeformed
group SU(N). The quantum group analogues of these relations are defined by the following
commutation relations [17]:

�j�
∗
i = δij + qRkijl�

∗
l �k, (2)

�l�k = q−1Rjikl�j�i, i, j = 1, 2, . . . , N, (3)

where the N2 × N2 matrix Rjikl [4] is

Rjikl = δjkδil(1 + (q − 1)δij ) + (q − q−1)δikδjlθ(j − i), (4)

and the function θ(j − i) = 1 for j > i and zero otherwise. Under the linear transformation

�′
i =

N∑
j=1

Tij�j , (5)

where the matrix T ∈ SUq(N), the relations given in equations (2) and (3) are invariant. The
SUq(N) transformation matrix T and the R matrix satisfy the following relations [18]:

RT1T2 = T2T1R, (6)

R12R13R23 = R23R13R12, (7)

where T1 = T ⊗ 1, T2 = 1 ⊗ T ∈ V ⊗ V and (R23)ijk,i ′j ′k′ = δii ′Rjk,j ′k′ ∈ V ⊗ V ⊗ V .
It can be obtained from equation (6) through a unitary quantum group matrix [19]

T =
(

a b

c d

)
,

that

ab = qba, ac = qca cd = qdc,

bd = qdb bc = cb, ad − da = (q − q−1)bc

Detq(T ) = ad − qbc = 1,

(8)

with the unitary conditions a∗ = d, b∗ = −qc, q ∈ R. In paticular, for N = 2, the
SUq(2)-invariant algebra generated by the quantum group bosons �i , i = 1, 2, is given by
the following relations [17]:

�1�
∗
1 − q2�∗

1�1 = 1,

�2�
∗
2 − q2�∗

2�2 = 1 + (q2 − 1)�∗
1�1,

�1�2 = q�2�1,

�1�
∗
2 = q�∗

2�1,

(9)

in which they become the usual boson algebra in the limit q = 1. However, we exploit
a different quantum group, SUr(2)-bosons, where r = q1/q2. Although two-parameter
extensions of such investigations have been studied earlier [20], the two-parameter deformed
SUq1/q2 (2)-invariant bosonic oscillator algebra was first introduced in [21] during a realization
of the most general quantum group invariant oscillator algebra.
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The two-parameter generalized bosonic quantum gas with SUq1/q2 (2)-symmetry is
generated by the quantum group invariant bosonic �i oscillators and defined by the following
deformed commutation relations [21]:

�1�
∗
1 − q2

1�∗
1�1 = q2N

2 ,

�2�
∗
2 − q2

1�∗
2�2 = q2N

2 +
(
q2

1 − q2
2

)
�∗

1�1,

�1�2 = q1q
−1
2 �2�1,

�∗
1�

∗
2 = q2q

−1
1 �∗

2�
∗
1,

�1�
∗
2 = q1q2�

∗
2�1,

(10)

where N is the total boson number operator and q1, q2 are the real independent deformation
parameters. Hereafter, we will consider 0 < q1 < ∞ and 0 < q2 < ∞. Moreover, the total
deformed number operator for these two-parameter deformed oscillators is

�∗
1�1 + �∗

2�2 = [N1 + N2] = [N ], (11)

whose spectrum is defined by the following Fibonacci basic number [n]:

[n] = q2n
2 − q2n

1

q2
2 − q2

1

, (12)

which is a generalization of the usual q-numbers. Since all thermodynamical and statistical
functions in this study are obtained in terms of this generalized q-number, the Fibonacci basic
number [n] will be of crucial importance for the present two-parameter boson gas model.

With the above theoretical motivation in mind, one can check that the two-parameter
deformed bosonic algebra in equations (10) and (11) shows SUq1/q2(2)-symmetry. Our
deformed bosonic algebra is invariant under the following transformation:(

�′
1

�′
2

)
= T

(
�1

�2

)
=

(
a −q1q

−1
2 b∗

b a∗

) (
�1

�2

)
, (13)

such that T is the transformation matrix and T ∈ SUq1/q2(2). The elements of matrix T satisfy
the following equations:

ab = q1q
−1
2 ba, ab∗ = q1q

−1
2 b∗a,

bb∗ = b∗b, aa∗ + q2
1q−2

2 b∗b = 1,

a∗a + bb∗ = 1.

(14)

If we can rewrite all relations in equations (10) and (11) for the transformed ones, one can
readily see that our system remains unchanged. We note that the matrix elements of T are
assumed to commute with �1,�2,�

∗
1,�

∗
2.

Before closing this section, we should also emphasize some important limiting cases of the
SUq1/q2(2)-invariant bosonic oscillator algebra in equations (10) and (11). The one-parameter
deformed SUq(2)-invariant bosonic oscillator algebra can be obtained in the limit q2 = 1 as
defined by equation (9). In the limit q1 = q2 = 1, one can recover the usual bosonic algebra
in equation (1).

3. SUq1/q2 (2)-boson model

In this section, our aim is to find a representation of �i oscillators in terms of the usual bosonic
oscillators φi . First, we consider the following Hamiltonian in terms of SUq1/q2(2)-generators
for two different kinds of bosonic particle families with the same energy,

HB =
∑

k

εk(M1,k + M2,k), (15)
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where the deformed boson number operators M1,k and M2,k are defined as

M1,k = �∗
1,k�1,k, M2,k = �∗

2,k�2,k, (16)

εk is the spectrum of energy, k = 0, 1, 2, . . . , and [�∗
i,k, �j,k′ ] = 0, for k �= k′. The operators

M1 and M2 satisfy the following relations for a given k:

M2�1 − q−2
1 �1M2 = 0, M1�2 − q−2

2 �2M1 = 0. (17)

The normalized states of the above Hamiltonian can be built by applying the operators �∗ on
the vacuum state |0, 0〉 for a given k as

|m1,m2〉 = 1/
√

[m1]![m2]!�∗m1

1 �∗m2

2 |0, 0〉, (18)

where the Fibonacci basic number [m] is defined in equation (12). In order to express a new
representation for �i oscillators in terms of the usual bosonic oscillators φi,k and φ∗

i,k satisfying
equation (1), we propose the following representations for a given k:

�1 = (φ∗
1 )−1[N1]qN2

2 , �∗
1 = φ∗

1q
N2
2 , (19)

�2 = (φ∗
2 )−1[N2]qN1

1 , �∗
2 = φ∗

2q
N1
1 . (20)

By means of this representation, we are able to rewrite the Hamiltonian in equation (15) as

HB =
∑

k

εk[N1 + N2], (21)

where Ni,k = φ∗
i,kφi,k and the spectrum of the bracket [N1 + N2] is given by equation (12). It is

important to note that when we compare this new Hamiltonian with the original Hamiltonian
in equation (15), this representation brings about an interacting Hamiltonian for the system
of two different kinds of bosonic particle families. This results from the two-parameter
quantum group symmetry of the system. Also, such an interaction is fixed by the deformation
parameters q1 and q2. The non-interacting system generated by free bosonic particles can
obviously be obtained in the limit q1 = q2 = 1. The low temperature thermodynamics of
a gas of such two-parameter deformed quantum group invariant bosonic oscillators will be
discussed in the next section.

On the other hand, we would like to generalize the representations given in equations (19)
and (20) for arbitrary N case via the following transformations:

�1 = (φ∗
1 )−1[N1]q

∑N
l=2 Nl

2 ,

�2 = (φ∗
2 )−1q

N1
1 [N2]q

∑N
l=3 Nl

2 ,

�3 = (φ∗
3 )−1q

N1+N2
1 [N3]q

∑N
l=4 Nl

2 ,

...

�m = (φ∗
m)−1q

∑N−1
l=1 Nl

1 [Nm],

(22)

and for the adjoint equations

�∗
1 = (φ∗

1 )q
∑N

l=2 Nl

2 ,

�∗
2 = q

N1
1 (φ∗

2 )q
∑N

l=3 Nl

2 ,

�∗
3 = q

N1+N2
1 (φ∗

3 )q
∑N

l=4 Nl

2 ,

...

�∗
m = q

∑N−1
l=1 Nl

1 (φ∗
m).

(23)
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4. Low temperature thermodynamics of SUq1/q2 (2)-boson gas

In this section, we investigate the low temperature (high density) behaviour of the SUq1/q2(2)-
boson gas described by the Hamiltonian in equation (21). This Hamiltonian can also be written
as

HB =
∑

k

εk(
q2

1 − q2
2

) ∞∑
l=1

2ı (N1 + N2)
l

l!
(lnl q1 − lnl q2). (24)

The grand partition function ZB of the system is

ZB = Tr exp

[
−β

∑
k

εk(�
∗
1,k�1,k + �∗

2,k�2,k)

]
eβµ(N1,k+N2,k ), (25)

where the trace is taken over the states in equation (18). From equations (19)–(21), this grand
partition function becomes

ZB =
∏
k

∞∑
n1=0

∞∑
n2=0

e−βεk [n1+n2] eβµ(n1+n2), (26)

which can be rewritten as

ZB =
∏
k

∞∑
n=0

(n + 1) e−βεk [n]zn, (27)

where z = eβµ is the fugacity. Since we are studying the low temperature (high density)
behaviour of the SUq1/q2(2)-boson gas, we write the above grand partition function in the
thermodynamical limit as

ln ZB = ln

(
1 +

∞∑
n=1

(n + 1)zn

)
+

4πV

h3

∫ ∞

0
p2dp ln

(
1 +

∞∑
n=1

(n + 1) e−β[n]εzn

)
. (28)

We note that the
⇀

p = ⇀

0 case plays a special role in the ideal Bose gas [22]. Since ln ZB

diverges in the
⇀

p = ⇀

0 term as z → 1, we separately account for the term
⇀

p = ⇀

0 as the first
term in the sum of equation (28). Although the quantum algebraic structure of the SUq1/q2(2)-
invariant boson model defined by equations (10)–(12) is symmetric between q1 and q2, the
only limitation for the convergence of the series in the integrand of equation (28) comes
conventionally from the definition of the quantum group SUr(2) with 0 < r � 1. Since
r = q1/q2 for our model, we should have the condition q2 > q1 for the rest of the calculations
of this study.

One can calculate the average number of particles 〈N〉 by

〈N〉 = β−1(∂ ln ZB/∂µ)T,V , (29)

which leads to

〈N〉 = 〈N0〉 +
V

λ3

∞∑
n=1

zn

[n]3/2
, (30)

where the thermal wavelength is λ =
√

(2πh̄2/mkT ). Equation (30) can also be written as

λ3 〈N0〉
V

= λ3

ν
− g̃3/2(z, q1, q2), (31)
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Figure 1. The (q1, q2)-deformed functions g̃3/2(1, q1, q2) and g̃5/2(1, q1, q2) as a function of the
model parameters q1 and q2 for 1 � q1 � 8, 1 � q2 � 8.

where ν = V /〈N〉 and the (q1, q2)-deformed function g̃3/2(z, q1, q2) is defined by

g̃3/2(z, q1, q2) =
∞∑

n=1

zn

[n]3/2
, (32)

with the Fibonacci basic number [n]. In the limit q1 = q2 = z = 1, we find the function
g̃3/2(1, 1, 1) = ζ(3/2), which is the Riemann zeta function. Our model will exhibit the
Bose–Einstein condensation when the following condition is satisfied:

λ3

ν
� g̃3/2(1, q1, q2). (33)

This means that a finite fraction of the particles occupies the level with
⇀

p = ⇀

0. The value
of the (q1, q2)-deformed function g̃3/2(1, q1, q2) depends on the deformation parameters q1

and q2. Therefore, these parameters are responsible for the low temperature behaviour of
the present two-parameter boson gas model. Figure 1 shows a plot of the (q1, q2)-deformed
function g̃3/2(1, q1, q2) as a function of the model parameters q1 and q2.

The critical temperature Tc(q1, q2) for our model can be found from equation (33) as

Tc(q1, q2) = 2πh̄2/mk[
νg̃3/2(1, q1, q2)

]2/3 . (34)

Thus, the (q1, q2)-deformed function g̃3/2(1, q1, q2) < g̃3/2(1, 1, 1) = ζ(3/2) = 2.61, which
means that the critical temperature for our model is much larger than the critical temperature
Tc(1, 1) for a free boson gas. Moreover, we compare these critical temperatures with those
obtained from the one-parameter deformed SUq(2)-boson model in [11] as follows:

Tc(q1, q2) > Tc(q) > Tc(1, 1). (35)

Obviously, one can find a relation between the critical temperatures of the present two-
parameter boson gas model and the free boson gas:

Tc(q1, q2)

Tc(1, 1)
=

(
2.61

g̃3/2(1, q1, q2)

)2/3

. (36)
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Figure 2. The ratio Tc(q1, q2)/Tc(1, 1) of the (q1, q2)-deformed critical temperature Tc(q1, q2)

and the undeformed Tc(1, 1) as a function of the deformation parameters q1, q2.

In figure 2, we show the plot of equation (36) as a function of the deformation parameters q1

and q2.
The internal energy U of the system can be calculated from

U = −∂ ln ZB

∂β
+ µ〈N〉, (37)

which leads to

U

〈N〉 = 3

2

νkT

λ3
g̃5/2(z, q1, q2), (38)

where the (q1, q2)-deformed function g̃5/2(z, q1, q2) is defined as

g̃5/2(z, q1, q2) =
∞∑

n=1

zn

[n]5/2
. (39)

When we take the limit q1 = q2 = z = 1, the function g̃5/2(1, 1, 1) = ζ(5/2) = 1.34. Figure 1
also shows a graph of the (q1, q2)-deformed function g̃5/2(1, q1, q2) as a function of the model
parameters q1 and q2. With the above results in mind, the specific heat of the SUq1/q2(2)-
boson gas for temperatures T < Tc(q1, q2) can be obtained from CV = (∂U/∂T )V . For low
temperatures, we have the chemical potential µ = 0. Consequently, the specific heat of our
model for temperatures T < Tc(q1, q2) is

CV

k〈N〉 = 15

4

g̃5/2(1, q1, q2)

g̃3/2(1, q1, q2)

(
T

Tc(q1, q2)

)3/2

. (40)

We now wish to summarize some of the results of [13] in a slightly different form in order
to find the specific heat of our model in the high temperature limit, i.e., the limit T > Tc(q1, q2).
In this limit, we have

ln ZB = V

λ3
(2z + 4z2ξ(q1, q2) + · · ·), (41)
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Figure 3. The specific heat Cv/〈N〉k as a function of T/Tc(q1, q2) for various values of the
deformation parameters q2 and 1 � q1 � 3.

where the function ξ(q1, q2) is

ξ(q1, q2) = 1

4

[
3(

q2
1 + q2

2

)3/2 − 1√
2

]
. (42)

From equation (41), we find the fugacity for high temperatures as

z ≈ 〈N〉
2V

λ3

(
1 − 2λ3ξ(q1, q2)〈N〉

V
+ · · ·

)
, (43)

and the internal energy in this case is

U = 3

2

〈N〉
β

[
1 − λ3ξ(q1, q2)〈N〉

V
+ · · ·

]
. (44)

Therefore, the specific heat for the limit T > Tc(q1, q2) is

CV

k〈N〉 = 3

2

(
1 +

λ3ξ(q1, q2)〈N〉
2V

+ · · ·
)

. (45)

Using equation (34), we can rewrite the above equation as

CV

k〈N〉 = 3

2

[
1 +

1

2
ξ(q1, q2)g̃3/2(1, q1, q2)

(
Tc(q1, q2)

T

)3/2

+ · · ·
]

. (46)

From equations (40) and (46), we deduce the gap in the specific heat in the limit T = Tc(q1, q2)

as follows:
�Cv

k〈N〉 ≈
{

15

4

g̃5/2(1, q1, q2)

g̃3/2(1, q1, q2)
− 3

2

[
1 +

1

2
ξ(q1, q2)g̃3/2(1, q1, q2)

]}
. (47)

In figures 3 and 4, we show the plots of the specific heat CV /k〈N〉 as a function of T /Tc(q1, q2)

for several values of the deformation parameters q1 and q2.
The pressure for low temperatures can be obtained from P = β−1(∂ ln ZB/∂V )T,µ as

P(1, q1, q2) = kT λ−3g̃5/2(1, q1, q2). (48)

By considering the above results, the effect of two deformation parameters on the
thermodynamics of the system will be discussed in the next section.
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Figure 4. The specific heat Cv/〈N〉k as a function of T/Tc(q1, q2) for various values of the
deformation parameters q2 and 1 � q1 � 4.

5. Discussion and conclusion

In this paper, we studied the thermostatistical consequences of introducing two-parameter
quantum group symmetry to a gas of two different kinds of bosonic particles. In particular, we
discussed the low temperature behaviour of a two-parameter deformed quantum group bosonic
gas with SUq1/q2(2)-symmetry. By means of an SUq1/q2(2)-invariant bosonic Hamiltonian,
we calculated several thermostatistical characteristics via the grand partition function of the
system. We obtained such characteristics in terms of some functions of deformation parameters
of the model. For instance, the average number of particles, the critical temperature, the internal
energy and the pressure are derived for low temperatures. Subsequently, the specific heat of
the system is obtained in the low and high temperature limits. We then focused on the effect
of the deformation parameters q1 and q2 on these results. The (q1, q2)-deformed functions
g̃3/2(1, q1, q2) and g̃5/2(1, q1, q2) in equations (32) and (39) are obtained as series expressed
in terms of the Fibonacci basic numbers [n]. As shown in figure 1, these deformed functions
become their respective Riemann zeta functions ζ(3/2) and ζ(5/2) in the limit q1 = q2 = 1.
The values of these deformed functions decrease from their maximum values at q1 = q2 = 1
and become approximately constant for q1 = q2 > 2. However, we should emphasize that
the values of these deformed functions and thus all other thermodynamical and statistical
functions change more rapidly in the interval 1 � (q1, q2) � 2.

On the other hand, as shown in figures 3 and 4, the specific heat of our model shows a
discontinuity at the critical temperature. This is the reason why we called the Bose–Einstein
condensation a second-order phase transition (no latent heat). Furthermore, the specific heat
of the SUq1/q2(2)-boson model has a λ-point transition behaviour which is not exhibited by
the free boson gas. Such behaviour is one of the important characteristics of some physical
phenomena such as superfluidity. An interesting point is that when the second deformation
parameter q2 increases, the discontinuity in the specific heat of the system decreases (figures 3
and 4) and it disappears in the limit q1 = q2 = 1, showing therefore a free bosonic gas
behaviour.
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Also, the gap in the specific heat of the SUq1/q2(2)-boson gas at the condensation
temperature decreases with the values of the deformation parameter q2, and becomes
approximately constant after the values q1 � 2.2, q2 � 2.5. Another interesting property
of the present two-parameter deformed boson gas is that, for high temperatures, it behaves as a
fermion gas [13] at the value of

(
q2

1 + q2
2

) ≈ 4.16 and it shows the Bose–Einstein condensation
for low temperatures in the interval q2 > q1 > 0. Obviously, the results for the free boson gas
can be found in the limit q1 = q2 = 1.

We now wish to discuss other effects of the deformation parameters q1 and q2 on
the algebraic structure of a system of the SUq1/q2(2)-invariant bosonic oscillators. These
deformation parameters play important roles for the system under consideration. Not only
do they constitute a quantum deformation of the classical symmetry group of the system, but
also they describe an interaction between two bosonic particle families. We may interpret
our model as containing two different kinds of bosonic oscillator families which interact
with each other via the deformation parameters q1 and q2 fixed by the quantum group
SUq1/q2(2)-symmetry. But these two bosonic families do not interact among themselves.
Therefore, in some sense, the entire behaviour of the system is characterized by the model
parameters q1 and q2. When we take the limit q1 = q2 = 1, the non-interacting system
with two different kinds of ordinary bosons can be recovered. In the limit q2 = 1, these
two bosonic particle families are also interacting via the deformation parameter q1, but in this
case, one of the bosonic oscillator families does not have the same physical properties as the
other.

As a final remark, the low temperature behaviour of a fermionic version of the present two-
parameter SUq1/q2(2)-boson model could be another direction of this work. One other problem
is how the analysis presented in this paper could be extended to a gas of relativistic bosonic
particles with the same quantum group symmetry. Furthermore, it would be interesting to
investigate the algebraic and statistical consequences of the present two-parameter SUq1/q2(2)-
boson model when the deformation parameter q1/q2 is a root of unity. We hope that these
problems will be addressed in the near future.
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